On the Complexity of Planar Covering of Small Graphs

نویسندگان

  • Ondrej Bílka
  • Jozef Jirásek
  • Pavel Klavík
  • Martin Tancer
  • Jan Volec
چکیده

The problem Cover(H) asks whether an input graph G covers a fixed graph H (i.e., whether there exists a homomorphism G → H which locally preserves the structure of the graphs). Complexity of this problem has been intensively studied. In this paper, we consider the problem PlanarCover(H) which restricts the input graph G to be planar. PlanarCover(H) is polynomially solvable if Cover(H) belongs to P, and it is even trivially solvable if H has no planar cover. Thus the interesting cases are when H admits a planar cover, but Cover(H) is NP-complete. This also relates the problem to the long-standing Negami Conjecture which aims to describe all graphs having a planar cover. Kratochv́ıl asked whether there are non-trivial graphs for which Cover(H) is NP-complete but PlanarCover(H) belongs to P. We examine the first nontrivial cases of graphs H for which Cover(H) is NP-complete and which admit a planar cover. We prove NP-completeness of PlanarCover(H) in these cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Parameterized Algorithms for Partial Cover Problems

Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well known problems like Set Cover, Vertex Cover, Dominating Set ...

متن کامل

Implicit branching and parameterized partial cover problems

Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well known problems like SET COVER, VERTEX COVER, DOMINATING SET ...

متن کامل

The topological ordering of covering nodes

The topological ordering algorithm sorts nodes of a directed graph such that the order of the tail of each arc is lower than the order of its head. In this paper, we introduce the notion of covering between nodes of a directed graph. Then, we apply the topological orderingalgorithm on graphs containing the covering nodes. We show that there exists a cut set withforward arcs in these...

متن کامل

$n$-Array Jacobson graphs

We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011